Assembly of centrosomal proteins and microtubule organization depends on PCM-1
نویسندگان
چکیده
The protein PCM-1 localizes to cytoplasmic granules known as "centriolar satellites" that are partly enriched around the centrosome. We inhibited PCM-1 function using a variety of approaches: microinjection of antibodies into cultured cells, overexpression of a PCM-1 deletion mutant, and specific depletion of PCM-1 by siRNA. All approaches led to reduced targeting of centrin, pericentrin, and ninein to the centrosome. Similar effects were seen upon inhibition of dynactin by dynamitin, and after prolonged treatment of cells with the microtubule inhibitor nocodazole. Inhibition or depletion of PCM-1 function further disrupted the radial organization of microtubules without affecting microtubule nucleation. Loss of microtubule organization was also observed after centrin or ninein depletion. Our data suggest that PCM-1-containing centriolar satellites are involved in the microtubule- and dynactin-dependent recruitment of proteins to the centrosome, of which centrin and ninein are required for interphase microtubule organization.
منابع مشابه
Cep72 regulates the localization of key centrosomal proteins and proper bipolar spindle formation.
Microtubule-nucleation activity and structural integrity of the centrosome are critical for various cellular functions. The gamma-tubulin ring complexes (gammaTuRCs) localizing to the pericentriolar matrix (PCM) of the centrosome are major sites of microtubule nucleation. The PCM is thought to be created by two cognate large coiled-coil proteins, pericentrin/kendrin and CG-NAP/AKAP450, and its ...
متن کاملNudel contributes to microtubule anchoring at the mother centriole and is involved in both dynein-dependent and -independent centrosomal protein assembly.
The centrosome is the major microtubule-organizing center in animal cells. Although the cytoplasmic dynein regulator Nudel interacts with centrosomes, its role herein remains unclear. Here, we show that in Cos7 cells Nudel is a mother centriole protein with rapid turnover independent of dynein activity. During centriole duplication, Nudel targets to the new mother centriole later than ninein bu...
متن کاملCentriolar satellites are assembly points for proteins implicated in human ciliopathies, including oral-facial-digital syndrome 1.
Ciliopathies are caused by mutations in genes encoding proteins required for cilia organization or function. We show through colocalization with PCM-1, that OFD1 (the product of the gene mutated in oral-facial-digital syndrome 1) as well as BBS4 and CEP290 (proteins encoded by other ciliopathy genes) are primarily components of centriolar satellites, the particles surrounding centrosomes and ba...
متن کاملMolecular characterization of centriole assembly in ciliated epithelial cells
Ciliated epithelial cells have the unique ability to generate hundreds of centrioles during differentiation. We used centrosomal proteins as molecular markers in cultured mouse tracheal epithelial cells to understand this process. Most centrosomal proteins were up-regulated early in ciliogenesis, initially appearing in cytoplasmic foci and then incorporated into centrioles. Three candidate prot...
متن کاملThe Role of γ-Tubulin in Centrosomal Microtubule Organization
As part of a multi-subunit ring complex, γ-tubulin has been shown to promote microtubule nucleation both in vitro and in vivo, and the structural properties of the complex suggest that it also seals the minus ends of the polymers with a conical cap. Cells depleted of γ-tubulin, however, still display many microtubules that participate in mitotic spindle assembly, suggesting that γ-tubulin is no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 159 شماره
صفحات -
تاریخ انتشار 2002